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Abstract

We use direct numerical simulations to analyze the evolution of a temporally grow-
ing two-dimensional shear layer seeded with dilute concentrations of bubbles under
gravity. The bubble concentrations are dilute enough so that bubble-bubble inter-
actions can be neglected, but are large enough fur cumulative effects of bubbles to
influence the flow. The evolution of the bubble field is determined by tracking many
individual bubbles, and the flow field is advanced by using the Navier-Stokes equations
with a coupling term representing the effect of the bubbles on the flow. We inter-
pret the results in terms of the vorticity, density, and pressure fields relative to the
one-way coupled or passive case. For the coupled case we observe a reduction in the
magnitude of the vorticity and pressure gradients near the vortex center. In addition
to modification of the flow, we observe that the accumulation of bubbles is smaller
and the location of the equilibriam points are shifted further from the vortex center
as a result of the coupling. We explore how these changes are modified by different
Froude numbers and bubble sizes. The differences between passive and coupled cases
usually increase due to larger accumulations as we consider larger bubbles. However,
for certain Froude numbers an optimum coupling is observed at intermediate bubble
sizes due to the absence of equilibrium points for large bubbles.

PACS numbers: 47.55.Kf, 47.25.Jn L'.--- ---
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I Introduction

One important and common feature which occurs in a variety of fluid systems is the pres-
ence of shear layers. The evolution of shear layers has received much attention by researchers
due to the critical role it plays in mixing, momentum transport, and transition to turbu-
lence. As a result, there have been many advances in understanding the nature of single
phase shear layers, such as the observation of coherent spanwise structures which arise from
Kelvin-Helmholtz instabilities, 1,2 and the three-dimensional structures which arise when
these spanwise structures become unstable.3 ,4

Recently, the behavior of small particles in shear layers has been inveltigated. The
applications of such studies are far reaching, ranging from the mixing of fuel in engines to
the dispersion of pollutants in the environment. The nature of this advectiou depends on
the density of the particles relative to the fluid of the shear layer. On one hand, dispersion
of heavy or aerosol particles occurs when these particles are introduced into shear layers,
which is observed both in experiments 5,6 and simulations. 7,8 On the other hand, particles
which are lighter than the carrier fluid, such as air bubbles in water, accumulate near the
center of vortices in cellular flows 9 and in temporally evolving shear layers.1 0 One common
assumption made in all the previously mentioned numerical studies is to only consider dilute
suspensions of particles. This assumption allows one to neglect the interactions between
particles and the fluid and among particles themselves.

There have been several approaches to studying non-dilute particle laden flows. For
example, Biesheuvel and Gorrisen1 1 use a kinetic theory approach to derive one-dimensional
conservation equations in their investigation of void fraction disturbances for the case of
large bubbles at large void fractions. Cook and Harlow 12 employed ensemble-averaged two-
field equations with various closure models to investigate a bubble-laden von Kixnin vortex
street.

In this study, we wish to consider "weakly-dilute" suspensions of bubbles, namely flows
with bubbles that are dilute enough so that bubble-bubble interactions can be neglected,
but not dilute enough to ignore cumulative effects of bubbles on the flow. We also wish to
do this in a direct fashion, to avoid making assumptions about closure models. A similar ap-
proach has been used for heavy particles in the simulations of Squires and Eaton 13 and most
recently Elghobashi and Truesdell, 14 who investigated turbulence modification by particles
by including a source of momentum in the Navier-Stokes equations which accounts for the
net force on the particles back on the fluid. We use this approach for the case of bubbles,
which due to their massless nature yield a different contribution to the momentum equations
of the flow.

In the next section, we discuss the governing equations for the bubble motion and then
derive the momentum equations for the flow making use of the weakly-dilute assumption
in a general context. We then discuss the particular flow configuration we pursue in this
study. A brief discussion of the numerical methods and methods for analysis of the data are
presented, followed by the results of the simulations.
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2 Governing equations

The flow we are considering concerns the motion of a dilute concentration of gas bubbles in
a liquid, such as water. Our approach to this problem is to solve equations governing each
phase which incorporate the effects from the other phase, resulting in a two-way coupling.
Throughout this section we refer to the gas bubbles as either the bubble or particle phase
and the water or liquid as the fluid phase.

Unlike other studies, our goal is not to derive field equations for both phases. We derive
field equations only for the fluid phase, and calculate the bubble phase by following discrete
bubbles. The equations discussed in this section apply to any weakly-dilute bubbly flow. We
specify these equations to our particular flow field and provide initial conditions in a later
section.

2.1 Bubble Equation

We begin by discussing the equations used to calculate the bubble trajectories in the fluid.
Depending on the flow conditions around the bubble, there are several different equations one
can use here. In this study we consider bubbles small enough such that they are dominated
by viscous forces, and consider surface tension large enough to assume the bubbles spherical.
In addition, we assume that the bubbles maintain a constant volume, so that we can consider
these bubbles as rigid spheres. Maxey and Riley' 5 have derived such an equation for particles
in general which, neglecting the Faxen corrections for a non-uniform flow, is given by:

S= (in - m7 )g63i + M f-2 - + 1 rn D _

+67ra1L (ui - V) + 67ra 2 A jt d(u-V) fdd(

where uj(z3 ,t) and Vi(t) are the fluid and particle velocities, mr and mp are the mass of
the fluic displaced by the particle and the mass of the particle, a is the particle radius,
and i is the fluid viscosity. Here we have assumed that the acceleration of gravity g points
in the negative z3-direction. The terms on the right-hand side of Eq. (1) represent the
gravitational force, pressure force in absence of the particle, the added mass effects of the
form given by Auton et a!.,16 Stolkes drag, and the Basset history term. In addition to
neglecting the Faxen corrections, we also choose to neglect the Basset history term. The
basis for doing so lies in the assumptions used to derive Eq. (1), where the Reynolds number
based on the particle radius and slip velocity is zero. Departures from this condition have
been determined to result in a more quickly decaying kernel of the Basset history term.17

We nondimensionalize Eq. (1) with U and 6 (not to be confused with the Kronecker delta,
6ij, used above in the gravitational term) as the velocity and length scales, and using the
notation of Maxey 9 we obtain the following equation for the acceleration of the particle:

.4 ( + W3, - V,) + "3z ui (2)
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We have introduced three nondimensional parameters in Eq. (2), A, 1-, and W. The settling
velocity parameter, W, is defined as:

W = (m! - m,)g

W 61raAiU
and represents the ratio of gravitational to viscous effects, where WU gives the terminal
rise/settling velocity of a particle in a still fluid. The mass ratio parameter, 7?, is defined as:

P1
PP + 3pf

and reflects the differences in the fluid and particle densities. The material derivative in
Eq. (2) represents the effect of the pressure gradients on the particle motion, and therefore
1Z plays a crucial role in determining how particle and fluid element trajectories differ. The
mass ratio parameter can cover the range of 0 _< 1 < 2. For 1Z = 2/3, the pressure has the
same effect on the particle as on a fluid element, and corresponds to the case of neutrally
buoyant particles. For 7? = 0, corresponding to heavy particles, the pressure forces have no
effect on the particle motion. For bubbles with 1 = 2, the pressure forces are three times as
important to the bubble motion relative to a fluid element. It is for this reason that heavy
particles are dispersed by vortices while bubbles are entrapped by vortices. In this study, we
consider only bubbles with R = 2.

The inertia parameter, A, is defined as:

A 67raL6
(MV + 1mi) U

and is the inverse of the Stokes number. The inertia parameter reflects the relative impor-
tance of viscous to inertial effects, and in this study is large reflecting the dominance of the
viscous forces.

At this point we should comment on the credibility of using the Stokes drag law in
Eqs. (1) and (2). One requisite for using this expression is that the Reynolds number based
on the slip velocity and particle diameter be small:

R,=lu - V12a<

In absence of gravitational effects this restriction is met for the values of A we consider here,
but since we are interested in cases where W # 0 this condition can be violated. We can
correct this using an empirical coefficient based on Re. from Clift et al.:18

f = 1.0 + 0.15Re2/3

which results in the following equation:
S~3TDu 1d"-i = fA (u, - Vii) + AW53i + 3 7Zý2• (3)

In addition to altering the drag term, the non-zero rise velocity further justifies the elimina-
tion of the Basset-history term from this equation due to finite Reynolds number effects.

In developing Eq. (3) we have assumed that only a single bubble is present. But since we
are dealing with a weakly-dilute suspension of bubbles, the bubble-bubble interactions are
neglected, and we can calculate each bubble trajectory using Eq. (3) independently.
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2.2 Fluid Equations

In this section we derive the governing equations which describe the evolution of the fluid
phase. Since we are concerned with the motion of air bubbles in an incompressible liquid,
we begin the analysis of the governing equations for the fluid phase with the; incompressible
Navier-Stokes equations:

S= 0 (4)

Dui _ P 82u.
Pi - - (5)6i+ A +b

where P is the pressure, p is the dynamic viscosity, and b1 is the force of the bubbles on the
fluid. We can determine bi from from the equation of motion for a single bubble, Eq. (1),
which can be restated as:

dp• = V+ Si = 0

where the last equality results from substituting m. = 0 in the first term. Here Vi and Si
represent the net body and surface forces on the bubble. From Eq. (1) we obtain Vi = mfg83j,
and 3, consists of all the other terms on the right-hand side of the equation. It is important
to differentiate between these body and surface forces, since Newton's third law of action-
reaction implies that the force exerted by a single bubble on the fluid is simply

Bi = -i = Vi
= p1Cg63,

where C = 1ra' is the volume of the bubble. The coupling term bi in the momentum
equation exists at the bubble interface, but rather than calculate the interaction between
phases in such a fashion we choose a more macroscopic approach. For N bubbles under the
weakly-dilute assumption we obtain the overall force as

E = NpjCg631 .
N

where C is the average volume of the bubbles. This extensive quantity can then be converted
to the average intensive force b, by dividing by the total volume:

- = pf 63i

where I is the global or average number density, defined as the number of bubbles per volume.
We can also use the average void fraction,

in this expression:

;i pfg'83i
Although this force applies only at the fluid-bubble interface, for our macroscopic approach
we can define the local force of the bubbles on the fluid as:

4Pf Ai
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where e is the local void fraction. Using this expression for the force per unit volume of the
bubbles on the fluid we can write Eq. (5) as:

Dui OP a2 Ui
= -T7., + C) P1963, (6)

We can interpret the last term of Eq. (6) in terms of the density of the fluid-bubble mixture,
which is given by:

P = pj(1 -f ) (7)

From Eqs. (6) and (7) we see that the net effect of the weakly-dilute suspension of bubbles
is to introduce a buoyancy term which is a function of the local void fraction.

The next step is to determine the reference state of the fluid obtained by setting ui = 0
and e = Z in Eq. (6):

0=o
0-- -z pog631

For cases with Z = 0 and thus bl = 0, we obtain the familiar hydrostatic equation, where
Po = P1. However, in our case this procedure yields a reference density given by:

Po = Pf(l - Z)

or simply the average density of the fluid-bubble mixture. Using this relation with Eq. (7)
we can define the perturbation density of the mixture as:

P = P-po
= p1 (z-e) (8)

If we now make the substitution P = P +P' , subtract the reference state from Eq. (6), divide
by pl, and non-dimensionalize Eqs. (4), (6), and (8) according to the following variables:

U+= u/U; z+=X/6; t+=tU/W
p+p = PIP; C+ CA/+; P+=P/(p1 U2 )

we obtain the following set of equations, with the +'s omitted:

Ou (9)

Dui OF 1 a2u, 1 (10)
8i R-573F2 P6 3i 10

In addition to including 9 in this set of equations, we have also introduced two additional
parameters, the Reynolds and Froude numbers, given by:

Re = U/v; Y = U/(g8)ll 2
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We should point out several features concerning Eqs. (9)-(11). The most obvious is that
Eq. (10) is the same equation that one obtains in a fluid of variable density under the
Boussinesq approximation. The Boussinesq approximation assumes that density variations
are small enough so that the density appears as a constant in all terms except the buoyancy
term. These are the same assumptions we made when specifying our fundamental equations,
so the fact that we obtain the Boussinesq equations is no surprise. The difference between
a Boussinesq fluid and our two-phase flow is that in the case of the former the density or
temperature field is determined by a convection-diffusion equation, whereas for the two-phase
flow the density field is a function of the void fraction, Eq. (11), which is in turn dependent
on the equation of motion for the bubbles, Eq. (3).

3 Flow Configuration

In the previous section we discussed the set of equations needed to solve for each component
of a two-phase flow. In developing these equations we left the flow length and velocity scales,
6 and U, undetermined, since we wished to emphasize the fact that these equations are valid
for any weakly-dilute bubbly flow. Having done this, we now turn our attention to the
specific flow we consider.

The flow configuration we study is a two-dimensional shear layer initially with a parallel
flow in the x=-direction and gravity acting in the negative z3 -direction. This base flow
has a tanh velocity profile, and is perturbed using eigenfunctions corresponding to the most
unstable mode of inviscid theory.'1 The velocity scale U is the velocity difference across the
shear layer, and the length scale 6 is taken to be the vorticity thickness defined as:

U
(au/8aX),

For these scales, the nondimensional initial profile is given by:

U(X3 ) = I tanh(2z3 )

and the initial perturbation is given with the fundamental wave number a = 0.8892. We
give this perturbation an amplitude of 0.01.

In addition to defining the flow'scales, we must also discuss our selection of the non-
dimensional parameters appearing in the final set of equations we use to solve the two-phase
flow. This final set of equations consists of Eq. (3) for the bubble phase and Eqs. (9)-(11)
for the fluid-bubble mixture. From these equations we have Re, .7, and 2 appearing in the
fluid equations and A, W, and V? appearing in the bubble equation as our non-dimensional
parameters. The mass ratio parameter is fixed at 7P. = 2, and to simplify matters we
consider an overall void fraction of 9 = 0.01 and a Reynolds number of Re = 1000 in all
cases. This leaves us with 7, A, and W. However, these three parameters cannot be
chosen independently. We should recognize that both A and Re give ratios of viscous to
inertial forces, likewise W (actually WA) and " relate gravitational to inertial effects. The
difference between these two sets of parameters concerns the length scales on which these
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terms operate. Therefore, if we include the ratio of bubble to flow length scales, a/8, in our
list of parameters, we can then express the bubble parameters A and W in terms of the flow
parameters Re and 7:

A- = (12)
=2 ( Re(

As a result of these relations, for fixed 9, Re, and 1? we have only two independent parameters,
and we choose these to be " and either a/1 or A. By choosing a/6 or A as a global parameter
we are restricting ourselves to simulations with uniform bubble sizes. However, we could
easily assign individual values to a/S (also requiring different values for A and W) for each
bubble in our simulations.

4 Numerical simulation

The direct numerical simulation used to calculate the evolution of the flow is not unlike
methods previously used in Rayleigh-B~nard convection, 20 or more precisely the strati-
fied shear-layer code of Wang and Maxey. 2 1 We use a pseudospectral technique to advance
Eqs. (9)-(11) in our two-dimensional simulations on a 64 x 128 grid. We simulate a tem-
poral shear layer, and thus apply periodic boundary conditions in the xl-direction. Because
we consider bubbles with a finite rise velocity that can affect the flow, the no normal flow
conditions at the vertical boundaries commonly used in the Rayleigh-Binard simulations are
not applicable here. Instead, we apply periodic boundary conditions in the z3-direction.
We do this by extending the domain in X3 so that flow in the center of the simulation is not
influenced by the boundary, and then apply an additional shear layer of opposite sense to the
main shear layer at the boundaries to allow for periodicity. The shear layer at the boundary
has twice the thickness of the real shear layer, which in addition to the decay of the initial
perturbation away from the central shear layer stabilizes the layer across the boundary. The
box size is then L = 27r/a - 7.1 in the x1-direction and 2L in the x3 -direction.

We rewrite Eq. (10) as follows:
au. a (p+ O + •• 1alu, 1 ,
M%- = (U × W)) 2 +R 8- (14)

and advance the flow field using a second-order Adarns-Bashforth scheme on the non-linear
and buoyancy terms and a second-order Crank-Nicolson scheme on the linear viscous terms.
The pressure term and the continuity condition of Eq. (9) are taken care of by projecting
the Fourier coefficients of the velocity field onto an incompressible space:

where k, is the wavenumber vector.
We initially seed the entire flow field uniformly with bubbles of the same size, so that the

spacing between bubbles in both x1- and X3-directions is the same. The bubble locations
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are advanced applying the second order predictor-corrector scheme used in Ruetsch and
Meiburg1 0 to Eq. (3) after the flow field is advanced. This scheme requires only a first-
order accurate estimate of the material derivative of the fluid velocity at both predictor and
corrector steps in order to obtain an overall second-order scheme. In order to determine the
fluid velocity at the bubble locations, the Hermite interpolation scheme of Balachandar and
Maxey22 is used.

The remaining computational issue concerns the method for obtaining the values for the
density at the grid points from the bubble locations. For simulations with bubbles of uniform
volume, such as the simulations we consider in this study, we have the relation:

C =77

where 7 has been nondimensionalized by i7, and thus the perturbation density in Eq. (11)
can be expressed as

p = 10 7

so that we only need to establish a method of determining the number density at each grid
point. In order to do so efficiently, we use an interpolation scheme where a bubble only
affects the four grid points that define the cell in which the bubble is located. In general, the
contribution of each bubble to these grid points is weighted according to the location of the
bubble within the grid cell and the volume of the bubble, but for our uniform bubble size,
this contribution is weighted only by the location. For simplicity we use a linear weighting
in each direction. Thus, if a bubble is located in a grid cell with the bottom left corner
referenced by the grid coordinates (i,j), with the fractional distance of the bubble from
this grid point ( A, 3 ), then the contributions from this bubble to the non-dimensional
number density is given as follows:

'77,j (1 - Az-)(1 - A 3 )OGRID/INTOT

77i+ij Aýý(I - A.,,)NGpJDINTOT
ni+lj+l A AX3 NGRIDINTOT

77ij+i (1 - A-J)A- 3NGRD/INTOT

where NGPID = 64 x 128 is the total number of grid points and NTOT is the total number of
bubbles in the flow. For an equally spaced grid, we can think of the number density as the
number of bubbles/grid cell, in which case the average number density is given by the ratio
NTOT/NGRID, and the local number density is determined by summing the (1 - A ) (1 - A,,),
etc., terms. The ratio of these gives the nondimensional number density. Even for large
numbers of bubbles this techniques creates high frequencies in the Fourier coefficients of the
density field, and therefore requires some sort of filtering. We apply an exponential filter to
the Fourier coefficients of the density field:

where -f is chosen so exp(--y) gives the machine accuracy, and k," is the maximum
wavenumber in either direction.
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Although we simulate a two-dimensional flow, the void fraction' here represents a. volu-
metric void fraction which can be interpreted by assuming the bubble field is periodic in the
z2 -direction with the same initial spacing between bubbles in z2 as in x, and X3, with the
flow uniform in the x2-direction. We would like to choose a large number of bubbles which
result in smoother density profiles, but at the same time require that e be small. Because we
assume that there is no interaction between bubbles in our weakly-dilute cases, we satisfy
both conditions by carrying "virtual" bubbles along with the "actual" bubbles. As a result
we need to differentiate between the actual number of bubbles, NIACT, and the total number
NTOT = NACT + NvrpU. We can then obtain a smoother density values at the grid points
by summing over all the bubbles and normalizing by NTOT, however we determine the other
parameters of the flow based on NACT. As an example, we determine the bubble radius from
e and NACT. In turn, the bubble parameters A and W are given by this bubble radius and
Eqs. (12) and (13). A detailed summary of the parameters for all simulations is given in
Table I.

5 Analysis

We begin our analysis of the effect of bubbles on the shear layer by investigating the changes
which occur to the vorticity field. The general vorticity equation for a Boussinesq fluid with
gravity acting in the negative X3-direction is given by:

Dwi +U. ( a: S :2 - il+ 1+ 2wR

The first two terms on the right-hand side of this equation are vorticity production terms
resulting from vortex stretching/tilting and horizontal density fluctuations being acted on
by gravity. The last term represents the viscous diffusion of vorticity. In our case, where we
are dealing with only two spatial dimensions, the vorticity equation reduces to:

Dw lap' 1I( 2 W
D-t =F -- e+ 8-- (15)

where w here is in the z 2-direction. Therefore, for a two-dimensional flow, the only way
the vorticity of a material element can change is either by diffusion or due to coupling term
as a result of the horizontal density gradients. Because the density field is periodic in the
zj-direction, the net production of V'brticity across the central shear layer resulting from the
coupling term is zero. Therefore, diffusion is the only process which effects the circulation
across the shear layer.

In addition to the effect of the bubbles on the shear layer, the two-way coupling will also
affect aspects of the bubble motion relative to the passive case. Since the deviation of bubble
motion from fluid particles is dominated by the effects of pressure, such as the accumulation
of bubbles into regions of low pressure, the effects of coupling on the bubble motion can
be examined from the equation governing the pressure field. This equation is obtained by
taking the divergence of Eq. (14)-

a2 ((2) a1 Lp'(- P'+_ = (7LX W)i - (16a:X? 2) 8:i 72 (16)
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where, in addition to the nonlinear terms, the density perturbation provides an extra source
to the Poisson equation for the pressure. It is interesting to note from Eqs. (15) and (16)
that the horizontal gradients in the density affect the vorticity, while it is the vertical density
gradients that affect the pressure.

6 Results

Throughout this section we are interested not so much in describing how the flow and bubble
motion evolve with two-way coupling in absolute terms, but rather how this evolution differs
from the one-way coupled or passive case. The idea here is to provide some insight into the
differences between these two cases which can be used to develop models that predict the

coupled results based on the knowledge of the passive state. It is for this reason that when we
discuss results from coupled simulations, we always compare these to simulations performed
with passive bubbles. The passive simulations are run by setting F = oo which eliminates
the effect of the bubbles on the flow, but by keeping all other parameters, including W,
identical to the coupled case. We then can generate spatial fields and statistics based on the
differences between the two cases.

Before we discuss the results from the coupled simulations and how they differ from their
passive counterparts, we must first review some basic features of what occurs in the passive
case. Although the density fields for the passive cases will vary depending on A and W, the
evolution of the vorticity field will not change. We show a time sequence of the vorticity
field for the passive case in Fig. 1. From this sequence we observe that the flow remains
roughly parallel up to t - 10, at which time we observe the formation of the vortex core due
to the Kelvin-Helmholtz instability. During the latter stages of the shear layer development
we observe a roughly circular nature of the flow near the vortex center. Simple model flows
reflecting this circular nature have been used to investigate the motion of bubbles in vortical
flows. One such model which allows a simple analytical solution to bubble trajectories is
that of a solid-body vortex.10 Two important features obtained from this solution are the
equilibrium points, or locations where the bubbles come to rest, and the rate at which the
bubbles are captured by the equilibrium points. Without any drag correction, an exponential
rate of entrapment or accumulation is observed. This entrapment is a function of A alone,
and reaches an optimal value at A - 1. In the present study we consider A > 1, and
therefore the general trend we expert is for the accumulation of bubbles to be greater as A
becomes smaller. In the previous work 10 we differentiated between the accumulation rate of
bubbles near the vortex center and the ability of the vortex to trap bubbles for cases with
rise velocities. The accumulation rate near the vortex center, as we mentioned previously,
obtains a maximum at A - 1, whereas we find the that the ability of the vortex to trap
bubbles throughout the fluid increases with decreasing A. However, for the range of A we
consider here, when we discuss entrapment or accumulation we are referring to both these
phenomena.

The location of the equilibrium points is a function of both A and W4. For W = 0 the
equilibrium point coincides with the vortex center. As W increases, the equilibrium point
moves away from the vortex center along a line whose slope depends on A. For large A, this

10



line is roughly horizontal, corresponding to a force balance at the equilibrium point primarily
between the drag and gravitational forces. For smaller A, the line becomes more vertical as
pressure forces become more important in the force balance.

When the slip velocity of the bubble becomes large, which is most noticeable for cases with
rise velocities, we must apply corrections to the Stokes drag assumption as in Eq. (3). In such
cases, the analytical solution for the bubble trajectories discussed above is no longer valid.
One important difference between the analytical solution for cases without drag correction
and the actual bubble trajectories is the change in entrapment rate near the equilibrium
point. The entrapment rate becomes a function of both A and W, with the entrapment rate
decreasing as W increases. This reduced accumulation rate can be understood by noting
that the coefficient of the drag term in Eq. (3) is fA, where the correction f is a function of
the slip velocity. Because the equilibrium point moves further away from the vortex center
with increasing W, the slip velocity at the equilibrium point, (= u1 ), and hence f increase
accordingly. Therefore, when correcting for the deviation from Stokes drag we are effectively
considering an inertia parameter of AAC-TUAL = fEA, where fE is the correction at the
equilibrium point. Therefore, we expect the bubble accumulation to vary inversely with
both A and W.

Having reviewed these characteristics of the passive bubble motion in a solid-body vortex,
we now proceed to discuss the results of the two-way coupled simulations of a bubbly shear
layer. In the following sections we group or results according to different Froude numbers,
varying the bubble size within each section.

6.1 F = 1: Intermediate case

We begin our analysis for the .F = 1 cases by considering the largest bubble size, correspond-
ing to an inertia parameter of A = 5.8. Up to about t = 20, we observe small differences
between the passive and coupled runs since during this time the vortex core and pressure
gradient have not developed to a point where the bubble accumulation is large enough to
affect the flow. At t = 30, however, we do observe differences between the two cases. A plot
of the vorticity, density, and pressure for both passive and coupled cases is shown in Fig. 2a.
It is helpful in comparing the coupled and passive cases to plot the difference between these
two fields obtained by subtracting the two fields point by point. These differences are also
shown in Fig. 2a. Consistent with observations from the passive bubble motion in a solid-
body vortex, we observe the accumulation of bubbles (signified by a large negative density)
to the right of the vortex center. We also observe that this accumulation occurs as a result of
the depletion of bubbles from the braid region of the flow, or region between the vortex cores.
From Eq. (15) we know that such accumulations of bubbles result in vorticity production
on either side of the accumulation given by '- 2(ap'/1x 1 ). To the left of the accumulation
this term generates negative vorticity and to the right positive vorticity, resulting in the
observed decrease of vorticity in the vortex center and the increase in vorticity along the
right-hand edge of the vortex. Once again we should emphasize that the net effect of the
production term is zero, so that the global circulation is preserved, but this production does
create localized variations.

At later times, such as in Fig. 2b, we observe a greater change in the vorticity between the
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passive and coupled cases. Similar to earlier times, the vorticity near the center is reduced
while the vorticity near the edge of the vortex is increased. Unlike earlier times, we note
that the magnitude of this difference is greatest near the vortex core, and a weaker but
more voluminous (positive) difference surrounds the vortex. Statistically, this difference is
observed in the PDF of the vorticity difference, Aw, shown in Fig. 3. In this figure, where
the vorticity difference is normalized by its rms value, Aw', we observe in addition to the
large contribution to the PDF from small values of the vorticity difference a small peak of
negative vorticity difference occurring at -10Aw'. It is these values which correspond
to the large vorticity differences near the center of the vortex. There are two reasons for
the occurrence of intense negative vorticity difference and the absence of a similar region
of positive vorticity difference. The first is due to the shape of the accumulation region.
This region has a sharper gradient on the left side, near the center of the vortex, than on
the right side. Although this accumulation region produces no net vorticity, the negative
vorticity resulting from the density gradient is more concentrated. The second reason for the
absence of a large positive vorticity difference results from the difference in the locations of
the equilibrium point of the bubble field and the stagnation point of the flow field. Although
the location of bubble accumulation remains approximately stationary throughout the flow
evolution, the production of vorticity due to this accumulation applies to material elements
of the fluid. The stagnation point in the vortex core occurs to the left of the accumulation
region, and therefore the negative vorticity production occurring here is applied to the same
fluid elements resulting in the large negative vorticity difference near the vortex core. To the
right of the vortex core the positive vorticity production affects different fluid elements as
they are swept past the accumulation. This sweeping results in a smaller vorticity difference
applied to a larger area.

In addition to the effect of the bubbles on the flow, the modification of the flow has an
effect on the entrapment of bubbles. This is more clearly seen at later times, for example
in Fig. 2b. The difference in the density field can be attributed to the reduction in the
magnitude of the pressure at the vortex center. The smaller pressure gradients affect both
the location and the entrapment rate into the equilibrium points. The entrapment rate is
reduced, and the location is shifted away from the vortex center.

Up to this point we have discussed the basic mechanisms concerning the modification of
both flow and bubble fields resulting from two-way coupling for a single set of parameters.
As we change the bubble size, and ia later sections the Froude number, we observe approxi-
mately the same behavior. We therefore focus more on the quantitative changes rather than
qualitative features resulting from different parameters. When discussing how different pa-
rameters affect the results, we must first discuss what effect the change in parameters has on
the passive simulations, and then proceed to the coupled simulations their difference relative
to the passive case. Keeping these ideas in mind, we now look at simulations with smaller
bubbles.

We now consider smaller bubbles with A = 10.3 and 23. In order to keep . constant,
this increase in A is accompanied by a decrease in WY. For the case of passive bubbles in
a solid-body vortex we know that the effect of the bubble size on the entrapment rate is
two-fold. On one hand the entrapment rate decreases with increasing A for the range of A
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considered here. However, we also observe greater accumulation rates when W decreases,
since the effective inertia parameter near the equilibrium point is JEA and fE decreases with
W. In addition to the effect of bubble size on the entrapment rate, we also observe a shift in
the location of the equilibrium point towards the vortex center as the bubble size decreases.
We can clearly see these two effects in Fig. 4 for passive bubbles. The accumulation is closer
to the center of the vortex relative than the passive case in Fig. 2b. However, in spite of the
reduction of the effective inertia parameter due to the smaller drag correction, we observe
a reduced accumulation rate, apparent from the minimum in the p' field. The reduction in
drag correction does not offset the change in A.

Similar to the case of A = 5.8, we observe that the accumulation is smaller and occurs
further away from the vortex center for the coupled simulation than in the passive simulation
for these smaller bubbles. However, the degree to which this happens decreases with smaller
bubbles. This difference is quantified in Fig. 5, which shows time series of both the maximum
and minimum number densities for all bubble sizes in both passive and coupled simulations.
(The minimum in p' corresponds to the maximum in q.) From this figure we see that the
accumulation decreases with bubble size for the passive and coupled cases. In addition,
the difference between the passive and coupled cases also decreases with bubble size. This
is what one expects, the largest difference between passive and coupled cases occurs when
the density gradient and hence accumulation is largest, which in turn occurs for the larger
bubbles. Note that at later times for the case where A = 5.8 the reduction of vorticity is so
great that the vortex becomes unable to hold all the bubbles it previously entrapped, and as
a result the number density decreases, as shown in Fig. 5. As a result, the density minimum
for A = 5.8 is only slightly larger than for .4 = 10.3, which at the last time frames show a
roughly equivalent maximum vorticity difference.

Aside from the 2D contour plots of the density fields and the time series of the maximum
and minimum number density, another useful quantity to examine is the vertical profile of the
density field, obtained by averaging the density over horizontal slices. The advantage of these
profiles over the full 2D fields is that the differences between the passive and coupled density
fields due to the shift in the equilibrium point is eliminated, since this shift is primarily
horizontal. These profiles also provide more information than the time series of the extremum
density values. Such profiles for passive, coupled, and the difference fields for all bubble sizes
are shown in Fig. 6. Here we observe that as the bubble size decreases the spike representing
accumulation of bubbles decreases and becomes broader. More striking is reduction in the
difference profile with decreasing bubble size.

6.2 • = 2: Weak gravity

If we now consider larger values of 7, we reduce the gravitational effects on the flow and
bubbles. In terms of the bubble parameters, for the same bubble sizes as in the previous
section we maintain the same values of A, but have smaller values of W. The effect these
smaller rise velocities have on the accumulation of bubbles in the passive case is to move
the equilibrium points closer to the vortex center and to increase the entrapment rate, as
seen in Fig. 7. The increase in entrapment rate is most noticeable for the larger bubbles,
with A = 5.8, where the maximum number density reaches values of - 20i. These large
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accumulation rates can be attributed to the smaller correction to the Stokes drag due to the
proximity of the equilibrium points to the vortex center.

In the coupled simulations with Y = 2, we also ooserve a larger accumulation of bubbles
than in the coupled simulations with F = 1. One might have expected that the large accu-
mulations, especially in the A = 5.8 case, would alter the pressure field to the extent that the
accumulation rate would be drastically reduced, even to the point where the accumulation
itself decreases, as in the latter stages in the 7 = 1 and A = 5.8 case. However, when
comparing simulations with different Froude numbers we must remember that the effect of
bubble accumulation on the pressure and vorticity fields is dependent not only on the mag-
nitude of the density gradients, but also in the Froude number through the .-2 coefficient.
As a result, although we see a greater accumulation of bubbles for the F = 2 case than in
the F = 1 case, the pressure gradients for the 7 = 2, A = 5.8 case, shown in Fig. 8, are
affected less by the bubble accumulation than in the . = 1 case of Fig. 2b. From Fig. 8 we
notice that the change in the vorticity field between passive and coupled cases is larger in
magnitude than for the 7 = 1 case, although the difference is confined to a smaller region.
Therefore we have a large difference in vorticity near the vortex center, but elsewhere the
vorticity field is not affected.

The compactness of the accumulation region can be attributed to several different reasons.
The most obvious is due to the increase in the entrapment rate, once again resulting from
the small slip velocity and hence drag correction when the equilibrium point lies near the
vortex ceater. The second reason concerns the nature of the equilibrium point. Up until
now we have used the term "equilibrium point" rather loosely. In the present case, where
the accumulation occurs near the vortex center, the flow is well approximated by the solid-
body vortex model, and as a result the equilibrium point is a single point. As the bubble
accumulation moves further away from the vortex center, the flow less resembles the solid-
body vortex model, and as a result we can not guarantee the uniqueness of an equilibrium
point, i.e. there can be an equilibrium region instead of an equilibrium point.

As we look at smaller bubbles for the F = 2 case, the the accumulation rate decreases
for both passive and coupled cases. Although 77,, is greater here than in their F = 1
counterparts, the smaller coefficient of the density gradient terms in the vorticity and pressure
equations begins to take effect, resulting in very small differences between the passive and
coupled cases, as seen in Fig. 9. In addition to the small differences in the vorticity and
pressure fields, we also observe similar trends in the density fields between passive and
couples cases. In fact, the large difference in the density field between the passive and
coupled cases in Fig. 8 are attributed primarily to the slight shift in the equilibrium point.
We can get a better view of this by examining the vertical density profiles in Fig. 10. Here
we see that although the density near the equilibrium points is much smaller than in the
F = 1 case (note the different horizontal scale in Fig. 6 and Fig. 10), the difference between
the passive and coupled simulations for all bubbles sizes is much smaller for F = 2.

To summarize, when increasing the Froude number we observe a greater accumulation
of bubbles resulting from the reduced drag correction near the equilibrium points and the
smaller rise velocities which allow bubbles more time to become entrapped by the vortex.
Although we see large density gradients in both passive and coupled cases, the effect on the
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vorticity and pressure is not as large as in the " = 1 simulations due to the 7` coefricient
of the density gradient terms in the vorticity and pressure equations, with the only exception
being the vorticity field of the A = 5.8 case.

6.3 F = 0.707: Strong gravity

One might expect from the results with 7 = 2 and 1 that as we consider F < 1, where grav-
itational effects are larger, we would observe smaller accumulation rates but with enhanced
vorticity production. In the previous sections the coefficient of the vorticity production term,
7- 2 , was for the most part dominant over the changes in the accumulation rate of bubbles.
Although we do see the accumulation of bubbles decreasing with increasing rise velocity,
we observe another phenomenon which reduces vorticity production. This is depicted in
Figs. 11(a)-(c). At time t = 30 we observe the accumulation of bubbles similar to the cases
with large Froude numbers, but at times t = 40,50 the bubbles leave this accumulation
region as they advect with the fluid and rise velocities. The pressure gradients near the
vortex center are smaller at these later times, and as a result the vortex is no longer able
to trap bubbles. Note that this occurs in both passive and coupled cases, and therefore is
not a result of the two-way coupling between phases. A similar phenomenon was observed
in passive bubbles rising through steady-state Stuart vortices.' 0 In the Stuart vortex flow
for cases without equilibrium points there exists a point which is least unstable and allows
bubbles to be retained by the flow, but not trapped. The motion of bubbles in our unsteady
flow results from both the disappearance of the equilibrium point and to a lesser extent the
retention of bubbles near a least unstable point. As the bubbles are released from this region
they form streaks which advect with the fluid and rise velocities.

The effect of these streaks on the maximum bubble concentration is shown in Fig. 12.
For the largest bubbles the maximum number density only reaches - 1.5i. After t '- 30 the
maximum number density actually decreases for both passive and coupled cases. Because of
these small accumulations, we see from Figs. 11(a)-(c) that there is little difference between
the vorticity and pressure fields of the passive and coupled simulations. As a result, the
number density fields of both passive and coupled simulations are roughly the same. Note
that unlike cases with stable equilibrium points, the vorticity production in this case occurs
along the streaks of bubbles and not near the vortex center.

As we consider smaller bubbles at the same Froude number, the decrease in rise velocity
accompanying the difference in size'results in the reappearance of equilibrium point during
the latter stages. As a result we observe larger accumulations of bubbles, with greater
differences between passive and coupled cases, as demonstrated in Figs. 12 and 13. However,
once the rise velocity is small enough to create an equilibrium point, as in the case for
A = 10.3, then as we move to smaller bubbles and thus rise velocities, such as those with
A = 20, we once again find that the accumulation decreases due to larger drag, and the
difference between passive and coupled cases becomes smaller. This suggests that at some
intermediate bubble size there is an optimum coupling effect. For large bubbles, there is no

.equilibrium point and hence no large accumulation, and for small bubbles the accumulation
rate into the equilibrium point is so small that large density gradients are not produced. The
reason no such trend was observed for larger Froude numbers is due to restriction on bubble
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size needed to satisfy our approximations.

7 Discussion and Conclusions

Through direct numerical simulations we have obtained information regarding the effect
of two-way coupling of bubbly flows with dilute concentrations of bubbles. In general we
are interested in how the two-way coupled simulations affect both bubble and flow motion
relative to the passive case. To summarize the results of the previous sections, we find that
the vorticity near the center of the vortex is reduced as a result of the accumulation of
bubbles, and that the pressure gradients near the vortex center are also reduced, resulting
in a smaller accumulation for the coupled simulations relative to the passive case. We
have explored how the bubble size and Froude number affect these changes. In general, we
notice smaller coupling effects for smaller bubbles, since the accumulation rate decreases
with bubble size. For most of the the simulations considered here, the effect of the Froude
number on the results is dominated by the .- 12 coefficient in the vorticity production and
pressure equations rather than the effect of the Froude number on the accumulation rate.

Although we have only considered the bubble size and Froude numbers as parameters
in this study, the information we obtained from this can explain how changes in other
parameters affect the results. We have used a constant void fraction in this study, but if we
substitute the equation for the perturbation density into the momentum equation, we see
that the coefficient of the coupling terms can be expressed as / Thus changes in the
global void fraction can be explained directly from the previous results. Moderate changes
in the Reynolds number to not effect the flow greatly, but would alter the values of A and
W via Eqs. (12) and 13.

In addition to the effects of different parameters on the simulations, we should also
consider how different configurations may affect the results. In this study we have only
presented material corresponding to flows uniformly seeded with uniform bubble sizes. We
have also run simulations with variable bubbles sizes, ranging the entire scope of bubbles
considered in this study. In general, the results are similar to what is observed for uniform
bubbles sizes, except that the accumulation region is not as compact and the changes in the
pressure and vorticity fields not as great due to the smaller density gradients.

Regardless of the values of the parameters, one recurring theme in the simulations is
that in most cases an equilibrium point exists in the flow where bubbles accumulate. The
presence of su.:.! - point might seem cc- trary to the assumption of a dilute bubbly flow. We
have chosen a small void fraction and small enough bubbles in hopes of avoiding violation of
the dilute assumption, and we now give quantitative justification that this is so. A violation
of the weakly-dilute assumption would imply that bubbles are close enough that bulbbl'-
bubble interactions become important. Although we know of no precise minimum cutoff for
the bubble separation to exclude any such interaction, we can easily calculate the minimal
bubble separation occurring in the flow at any time simply from knowledge of the maximum
void fraction or number density. The separation between bubble centers, As, is given by:

1/3
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At the beginning of the simulations, with e = 1, we have a uniform separation of As/a - 7.4.
For all but one simulation the maximum void fraction is - 5? giving As/a = 4.3. The only
exception is the case with " = 2 and A = 5.8, which results in e - 20 or As/a = 2.7. For
this latter case the dilute assumption is most certainly violated at the equilibrium point, but
in all other cases the minimum separation is large enough for the bubble-bubble interactions
to be neglected as a first approximation.
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Table I. Flow and bubble parameters.
Simulation Re 7 Q/8 A W z NTOTAL NACT

I 1000 0o 0.039 5.8 0.34 0.01 294,912 1152
II 1000 0o 0.029 10.3 0.19 0.01 294,912 2048
III 1000 0o 0.019 23.2 0.086 0.01 294,912 4608
IV 1000 1.0 0.039 5.8 0.34 0.01 294,912 1152
V 1000 1.0 0.029 10.3 0.19 0.01 294,912 2048
VI 1000 1.0 0.019 23.2 0.086 0.01 294,912 4608
VII 1000 0o 0.039 5.8 0.68 0.01 294,912 1152
VIII 1000 0o 0.029 10.3 0.38 0.01 294,912 2048
IX 1000 0o 0.019 23.2 0.17 0.01 294,912 4608
X 1000 1/V/2 0.039 5.8 0.68 0.01 294,912 1152
XI 1000 i/V 2 0.029 10.3 0.38 0.01 294,912 2048
XII 1000 1/v"2 0.019 23.2 0.17 0.01 294,912 4608
XIII 1000 0o 0.039 5.8 0.085 0.01 294,912 1152
XIV 1000 0o 0.029 10.3 0.048 0.01 294,912 2048
XV 1000 0o 0.019 23.2 0.022 0.01 294,912 4608
XVI 1000 2.0 0.039 5.8 0.085 0.01 294,912 1152
XVII 1000 2.0 0.029 10.3 0.048 0.01 294,912 2048
XVIII 1000 2.0 0.019 23.2 0.022 0.01 294,912 4608
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List of Figures

Time sequence of the vorticity field for passive cases. Contour levels are in
increments of 0.1, where solid lines represent positive and dashed lines negative
values of vorticity.

2 Vorticity, density and pressure fields for the coupled and passive cases, along
with their differences, at a) t = 30 and b) t = 50 for 7 = 1 and A = 5.8.
The solid lines indicate positive values and the dashed line negative values.
The increment between countour levels is given in each figure. At t = 30,
the accumulation is not large enough to produce substantial changes from the
coupling, however at t = 50 we observe differences in all fields, most notably
the reduction in vorticity, pressure gradient, and bubble azcumulation near
the vortex center.

3 PDF of relative vorticity between passive and coupled cases at t = 50 for
7 = 1 and A = 5.8. The small peak at large negative values indicates the
intensity of the vorticity difference near the vortex center.

4 Vorticity, density and pressure fields for the coupled and passive cases, along
with their differences, at t = 50 for 7 = 1 and A = 10.3. For these smaller
bubbles we observe reduced accumulation and hence weaker coupling.

5 Time series of maximum and minimum number density, 77, for: A = 5.8
(top), 10.3 (center), and 23 (bottom). All cases have 7 = 1. The solid lines
represent two-way coupled and dashed lines passive simulations. These times
series show that the accumulation of bubbles decreases with bubble size(larger
A). Note that for A = 5.8 the maximum accumulation for the coupled case
becomes smaller as bubbles are released from the equilibrium points.

6 Vertical density profiles averaged over horizontal slices at t = 50 for: A -
5.8 (top), 10.3 (center), and 23 (bottom). All cases have 7 = 1. Here we
observe how the accumulation and difference between coupled and passive
cases decrease with bubble size.

7 Time series of maximum and minimum number density for: A = 5.8 (top),
10.3 (center), and 23 (bottom). All cases have 7 = 2. The solid lines rep-
resent two-way coupled and dashed lines passive simulations. The reduced
gravitational effects result in much larger accumulations for both passive and
coupled cases than for the 5r = 1 cases.

8 Vorticity, density and pressure fields for the coupled and passive cases, along
with their differences, at t = 50 for 7 = 2 and A = 5.8. For this larger Froude
number and hence smaller rise velocity, the bubbles accumulate more towards
the vortex center with an enhanced accumulation rate.

9 Vorticity, density and pressure fields for the coupled and passive cases, along
with their differences, at t = 50 for 7 = 2 and A = 10.3. Although the
accumulation is greater than for the same sized bubbles with 7 = 1, due to
the 7-2 coefficient the coupling effects are smaller.
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10 Vertical density profiles averaged over horizontal slices at t = 50 for: A = 5.8
(top), 10.3 (center), and 23 (bottom). All cases have.F = 2. These Passive-
Coupled column clearly shows the weaker coupling effects relative to Fig. 6.

11 Vorticity, density and pressure fields for the coupled and passive cases, along
with their differences, for A = 5.8 and F = 0.707 at (a) t = 30, (b) t = 40, (c)

t = 50. Although we see the accumulation of bubbles similar to previous cases
at t = 30, at later times the pressure gradient is not large enough to entrap
bubbles, and as a result we obserrve streaks of bubbles which are produced
from a least unstable point replacing the equilibrium point.

12 Time series of maximum and minimum number density for: A = 5.8 (top),
10.3 (center), and 23 (bottom). All cases have " = 0.707. The solid lines
represent two-way coupled and dashed lines passive simulations. The larger
gravitational effects result in smaller accumulations, most noticeable in the
A = 5.8 case where there is no equilibrium point for the bubbles at later times.

13 Vertical density profiles averaged over horizontal slices at t = 50 for: A = 5.8
(top), 10.3 (center), and 23 (bottom). All cases have F = .707. This suggests
that there is an optimum bubble size in terms of bubble accumulation for
cases with small F. For the smallest bubbles (bottom) the accumulation rate
is small, but for large bubbles (top) rise velocity is so large that equilibrium
points do not exist.
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Figure 1: Time sequence of the vorticity field for passive cases. Contour levels are in incre-
ments of 0.1, where solid lines represent positive and dashed lines negative values of vorticity.
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Figure 2: Vorticity, density and pressure fields for the coupled and passive cases, along with
their differences, at a) t = 30 and b) t = 50 for .7 = 1 and A = 5.8. The solid lines indicate

positive values and the dashed line negative values. The increment between countour levels is
given in each figure. At t = 30, the accumulation is not large enough to produce substantial
changes from the coupling, however at t = 50 we observe differences in all fields, most notably
the reduction in vorticity, pressure gradient, and bubble accumulation near the vortex center.
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Figure 3: PDF of relative vorticity between passive and coupled cases at t = 50 for " = 1
and A = 5.8. The small peak at large negative values indicates the intensity of the vorticity
difference near the vortex center.
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Figure 4: Vorticity, density and pressure fields for the coupled and passive cases, along with
their differences, at t = 50 for F = 1 and A = 10.3. For these smaller bubbles we observe
reduced accumulation and hence weaker coupling.
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Figure 5: Time series of maximum and minimum number density, 77, for: A - 5.8 (top), 10.3
(center), and 23 (bottom). All cases have 7" = 1. The solid lines represent two-way coupled
and dashed lines passive simulations. These times series show that the accumulation of bub-
bles decreases with bubble size(larger A). Note that for A = 5.8 the maximum accumulation
for the coupled case becomes smaller as bubbles are released from the equilibrium points.
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Figure 6: Vertical density profiles averaged over horizontal slices at t = 50 for: A = 5.8
(top), 10.3 (center), and 23 (bottom). All cases have .F = 1. Here we observe how the
accumulation and difference between coupled and passive cases decrease with bubble size.
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Figure 7: Time series of maximum and minimum number density for:. A = 5.8 (top), 10.3
(center), and 23 (bottom). All cases have ." -=2. The solid lines represent two-way coupled

S~and dashed lines passive simulations. The reduced gravitational effects result in much larger
! accumulations for both passive and coupled cases than for the ." - 1 cases.
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Figure 8: Vorticity, density and pressure fields for the coupled and passive cases, along with
their differences, at t = 50 for " = 2 and A = 5.8. For this larger Froude number and
hence smaller rise velocity, the bubbles accumulate more towards the vortex center with an
enhanced accumulation rate.
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Figure 9: Vorticity, density and pressure fields for the coupled and passive cases, along with
their differences, at t = 50 for Y = 2 and A = 10.3. Although the accumulation is greater
than for the same sized bubbles with )r = 1, due to the --2 coefficient the coupling effects
are smaller.
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Figure 10: Vertical density profiles averaged over horizontal slices at t = 50 for: A = 5.8
(top), 10.3 (center), and 23 (bottom). All cases have F" = 2. These Passive-Coupled column
clearly shows the weaker coupling effects relative to Fig. 6.
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Figure 11: Vorticity, density and pressure fields for the coupled and passive cases, along with
their differences, for A = 5.8 and TF = 0.707 at (a) t = 30, (b) t = 40, (c) t = 50. Although
we see the accumulation of bubbles similar to previous cases at t = 30, at later times the
pressure gradient is not large enough to entrap bubbles, and as a result we obserrve streaks
of bubbles which are produced from a least unstable point replacing the equilibrium point.
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Figure 12: Time series of maximum and minimum number density for:. = 5.8 (top),
10.3 (center), and 23 (bottom). All cases have $F = 0.707. The solid lines represent two-way
coupled and dashed lines passive simulations. The larger gravitational effects result in smaller
accumulations, most noticeable in the A = 5.8 case where there is no equilibrium point for
the bubbles at later times.
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Figure 13: Vertical density profiles averaged over horizontal slices at t = 50 for: A = 5.8
(top), 10.3 (center), and 23 (bottom). All cases have ." = .707. This suggests that there is
an optimum bubble size in terms of bubble accumulation for cases with small F. For the
smallest bubbles (bottom) the accumulation rate is small, but for large bubbles (top) rise
velocity is so large that equilibrium points do not exist.
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